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Abstract 

The potential strengths and limitations of the Landsat systems for water clarity and colored 

dissolved organic matter (CDOM) measurement were evaluated in Minnesota in the summers of 

2013 and 2014. Optical water quality characteristics, including chlorophyll a, total suspended 

solids (TSS), dissolved organic carbon (DOC), and CDOM were collected along with imagery 

from Landsats 7 and 8. Sites represented a wide range of concentrations of CDOM, chlorophyll, 

and mineral suspended solids (MSS), the primary factors that affect reflectance. Clear images 

from September 24, 2013 (Landsat 7) and September 16, 2013 (Landsat 8) acquired for northern 

Minnesota eight days apart allowed comparison of the respective ETM+ and OLI sensors for 

CDOM measurements. We examined a wide variety of potential band and band ratio models and 

found some two-variable models that included the NIR band worked well for Landsat 8 (R
2
 =

0.82) and reasonably well for Landsat 7 (R
2
 = 0.74). The commonly used green/red model had a

poor fit for both sensors (R
2
 = 0.24, 0.25), and five sites with high MSS were clear outliers.

Exclusion of these sites and other sites not included with the Landsat 7 dataset yielded a less 

optically complex subset of 20 coincident lakes. For this subset strong models were found for 

many band and band ratio models, including the commonly used green/red model with R
2
 = 0.79

for Landsat 7 and R
2
 = 0.81 for Landsat 8. The less optically complex subset may explain why

the green/red model has worked well in other areas. For optically complex waters CDOM 

models that used the new Landsat 8 ultra-blue and narrower NIR band worked best for the full 

dataset indicating that the new bands and other Landsat 8 characteristics, such as higher 

radiometric sensitivity and improved signal-to-noise ratios, improve CDOM measurements. 

For water clarity measured as Secchi depth (SD), we compared September 1, 2008 Landsat 7 

and August 22, 2013 Landsat 8 images from path 28 using stepwise regression to identify the 
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best model using all bands and band ratios including the new blue and narrower NIR band. The 

best water clarity model for Landsat 8 used the OLI 2/4 band ratio plus OLI band 1 and was 

nearly identical with a model using the OLI 2/4 band ratio plus OLI band 2. The latter model is 

similar to the model used for previous Landsat water clarity assessments, which used the ETM+ 

1/3 band ratio plus ETM+ band 1. For SD measurements we found strong relationships with both 

sensors, with only slight improvements for the OLI sensor for the lakes in our datasets. In 

contrast to some previous reports that indicated Landsat 7’s ETM+ lacked sufficient sensitivity 

for reliable retrieval of CDOM, we found that overall both sensors worked well for water clarity 

and CDOM measurements. This will allow their continued use for current and historical 

measurements of important water characteristics on a regional scale. 
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1. Introduction

Historic and recent water clarity assessments in the Midwest USA based on Landsat 4, 5, and

7 imagery (Olmanson et al., 2008; Chipman et al., 2004; Greb et al., 2009; Fuller et al., 2004 & 

2011) have been used to determine spatial and temporal patterns on > 25,000 lakes and evaluate 

factors that affect water clarity (Olmanson et al., 2013). Landsat 8 will allow continuation of 

these assessments and potentially may enhance them. Improved capabilities of Landsat 8 data, 

including an additional shorter wavelength blue band (ultra-blue), narrower near-infrared (NIR) 

band, 12-bit radiometric resolution, and greater signal to noise ratios, could increase abilities to 

monitor high clarity lakes, which have inherently low reflectance in the blue and red bands 

typically used for retrieval of Secchi depth, a common measurement of water clarity. The same 

improvements in the OLI sensor also suggest Landsat 8 data has the potential to improve 

measurement of other water quality parameters, such as CDOM (colored dissolved organic 

matter), which constitutes the major fraction of DOM in many natural waters.  

The primary objective of this study was to compare the capabilities of Landsat 8 to that of 

Landsat 7 for retrieving two important optical water quality variables: Secchi depth (SD), a 

measure of water clarity, and CDOM, an optical proxy for dissolved organic carbon (DOC) 

concentration. To do this we conducted field campaigns on lakes and rivers in Minnesota during 

the summers of 2013 and 2014 and measured the following optical water quality characteristics: 

chlorophyll a, total suspended solids (TSS), dissolved organic carbon (DOC), and CDOM, as 

well as in situ reflectance spectra. Sites were selected to obtain a wide range of concentrations of 

CDOM, chlorophyll, and mineral suspended solids (MSS), the primary factors that affect light 

reflectance from water. Relatively clear images of path 27 for Landsat 7 (September 24, 2013) 

and 8 (September 16, 2013) in northern Minnesota that include many of the sampled lakes were 
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acquired eight days apart. A high likelihood of similar water quality conditions over this period 

facilitated a comparison of the two sensors (ETM+ on Landsat 7 and OLI on Landsat 8) for 

CDOM measurements. Because SD is measured throughout the state on a regular basis, we 

selected imagery that covered a larger area to increase the number and range of SD data for our 

analysis. We used a September 1, 2008 Landsat 7 image that we had previously used as part of a 

statewide assessment and an August 22, 2013 Landsat 8 image from path 28 for comparison.  

2. Background

2.1 Water clarity 

Water clarity as measured by Secchi disk transparency (commonly referred to as Secchi 

depth, SD) is the most widely measured lake water quality parameter. Its simplicity and low cost 

facilitates its use by many citizen monitoring programs. SD is important because it relates 

directly to water quality as perceived by lake users and to chlorophyll levels and trophic 

condition. An important optical property of natural waters, SD,is affected by both light 

absorption and scattering. In most inland lakes of the Midwestern USA, phytoplankton and 

plankton-derived particles control SD, and it is commonly used as a simple measure of lake 

trophic status. Many studies have shown strong inverse correlations between SD and chlorophyll 

levels in lakes (Carlson, 1977; Olmanson et al., 2011). 

 For inland lakes SD is also the water quality characteristic most widely measured by remote 

sensing (e.g., Olmanson et al., 2008; Greb et al., 2009). This situation is based largely on three 

factors: (i) Landsat has been the only inexpensive, regularly collected imagery with adequate 

spatial resolution for all lakes > 4 ha, (ii) Landsat sensors are able to retrieve accurate SD data 

using Landsat’s spectral bands, and (iii) Landsat’s sensors do not have adequate spectral 

characteristics for chlorophyll measurements in optically complex inland waters because 
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suspended solids cannot be distinguished from chlorophyll in the Landsat sensors (Olmanson et 

al. 2015). 

2.2 CDOM 

Colored dissolved organic matter (CDOM) is the most abundant DOM fraction in many 

natural waters (e.g., Thurman, 1983; Davies-Colley and Vant, 1987), especially in forested 

watersheds with wetlands. It affects water quality through mobilization of metals and 

hydrophobic chemicals, and it serves as a major source of reactive photochemical intermediates 

that control the photolysis of both natural DOM and trace organic contaminants, such as 

pharmaceuticals and personal care products. CDOM controls many aquatic ecosystem processes; 

for example, it affects light penetration and thus limits primary production, and it affects the 

thermal properties of water bodies (Houser, 2006). CDOM also has negative effects on 

production of safe drinking water and is a major precursor for trihalomethanes and other 

disinfection by-products. CDOM levels are needed for regional and global-scale models of 

carbon cycling because freshwater lakes play a much more important role in carbon cycling than 

might be anticipated from the small fraction of land area they occupy (Wilkinson et al., 2013). 

Although CDOM is a critically important water quality characteristic, few water management 

agencies include CDOM in their routine water quality monitoring programs. The paucity of 

CDOM data limits our understanding of carbon cycling in surface waters in many regions. 

Optical remote sensing via satellite imagery has the potential to fill this void and improve our 

understanding of CDOM distribution and the environmental factors that affect CDOM and DOM 

levels in surface waters. 

CDOM is usually reported as the absorptivity, aλ, of filtered water (0.2-0.7 μm pore size 

filter) at a specified wavelength; i.e., aλ (units of m
-1

) = 2.303Aλ/ℓ, where Aλ = absorbance of
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filtered water measured spectrophotometrically at wavelength λ and ℓ = light path length (m). 

Unfortunately, no standard wavelength is in use; marine scientists use 412 nm, and freshwater 

scientists usually use 420 or 440 nm, but other wavelengths also are used. 

The Landsat series of satellites (1-8) has collected imagery since the 1970s, and most of it 

has been archived, potentially enabling assessment of historical trends in CDOM levels on water 

bodies lacking field monitoring data. Several studies over the past decade have described 

empirical band-ratio algorithms to retrieve CDOM data from satellite imagery, e.g., Kutser et al. 

(2005a,b): 

a420 = 5.13(ALI2/ALI3)
-2.67

    (R
2
 = 0.73; n = 26)     [1]

ALI2 and ALI3 in eq. 1 represent reflectance (R) in Advanced Land Imager bands 2 (525-605 

nm) and 3 (630-690 nm). Menken et al. (2006) found a similar retrieval equation using ground-

based hyperspectral reflectance data: 

a440 = 166(R670/R571)
2.29

    (R
2
 = 0.74-0.88; n = 13-15)    [2]

The higher R
2
 was obtained when two lakes with very high chlorophyll (> 200 μg/L) and

suspended solids concentrations (> 80 mg/L) were excluded from the regression. Ficek et al. 

(2011) also reported an equation of similar form to eq. (1) with R
2
 = 0.85 (n = 235) using a

ground-based spectroradiometer and the ratio of reflectance values at 570 and 655 nm to retrieve 

CDOM data on Pomeranian lakes in eastern Poland.  

Brezonik et al. (2005) found that Landsat 5 TM yielded a poor fit (low R
2
) to CDOM data

when the regression equations were based solely on reflectance ratios, but they found an R
2
 of

0.77 (n = 15) using a two-term equation: ln(a440) = b0 + b1TM1 + b2(TM1/TM4). Similarly, 

Kutser (2012) found a weak relationship with a high amount of scatter between the ratio of 

Landsat bands 2 and 3 and CDOM in 14 Swedish lakes with a420 ranging from < 1 to ~18 m
-1

;
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the scatter was especially evident at higher levels. Kutser found a better fit (R
2
 = 0.62) for data

from Lake Mälaren, a large, multi-basin water body with low to moderate CDOM (a420 = ~1.0-

3.5 m
-1

) near Stockholm. He attributed the poor fit for the 14 lakes to the low radiometric

sensitivity of the Landsat 4, 5, and 7 sensors and the fact that the water-leaving signal inherently 

is low in lakes with high CDOM levels. This suggests that historical Landsat sensors may be 

poorly suited to waters having high CDOM levels. Landsat 8, launched in 2013, along with the 

European Sentinel-2 launched in 2015 with a second planned for launch in 2016 and Sentinel-3 

satellites planned for launch in late 2015 and 2017, have sensors with improved radiometric 

sensitivity, greater signal to noise ratios and better spectral resolution, thus potentially improving 

the capabilities to use optical remote sensing to map CDOM levels in inland waters. 

Based on data from 30 Upper Midwest lakes with wide ranges of CDOM, chlorophyll and 

TSS and simulated Landsat 8 OLI bands from in situ reflectance hyperspectra, Brezonik et al. 

(2015) recently found that the best CDOM model for OLI bands was similar to eq. 1. With 

simulated bands of the Sentinel-2 and 3 satellite sensors, which have a larger selection of bands, 

ratios using bands near 500 and 750 nm worked the best. Simulated Landsat 8 OLI bands 3 and 4 

calculated from the hyperspectra yielded a predictive equation for a440 with R
2
 = 0.84. That the

Landsat 8 bands worked nearly as well as the narrower Sentinel bands and hyperspectral bands 

probably reflects the fact that CDOM spectra are smooth and lack specific peaks or troughs in 

absorbance or reflectance.  

3. Methods

3.1 Calibration data
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Sampling sites. The only data available for CDOM comparisons were from our 2013 and 

2014 field campaigns, which included 61 surface water sites (lakes and rivers) in Minnesota and 

northern Wisconsin. Sites were selected to obtain a wide range of CDOM in both CDOM-

dominated systems and in optically complex waters where chlorophyll (algae) and mineral 

suspended solids also affect reflectance. The 2013 results were described previously by Brezonik 

et al. (2015). Because CDOM is more stable temporally than chlorophyll and water clarity 

(Brezonik et al., 2015) and our sample size was small, we used CDOM data collected in both 

2013 and 2014 (if the site was not measured in 2013) for sites within the clear portions of the 

available Landsat imagery. This yielded a total of 30 sites in the area of the Landsat images with 

28 usable data points for the September 16, 2013 Landsat 8 image, 25 usable data points for the 

September 24, 2013 Landsat 7 image, and 25 coincident data points between the images. One 

missing Landsat 7 data point was caused by the scan line corrector (SLC) data gap, and two sites 

had identifiable haze covering the sites in the Landsat 7 image. The other two missing sites for 

both images were river stations where the open water area was too narrow to provide pixels 

unaffected by terrestrial and bottom effects.  

Sampling and field procedures. SD was measured with a standard 20-cm disk from the shady 

side of a boat using the average of the depths where the disk just disappears and re-appears when 

raised from below the depth of disappearance. Water samples for determination of DOC, 

CDOM, absorbance, and chlorophyll a were collected in glass bottles submerged ~20 cm below 

the water surface. Bottles used for water samples were cleaned by acid washing, rinsing three 

times with nanopure water, and ashing for 4-6 h at 550°C. Caps were cleaned by soaking for 1 h 

in dilute HCl followed by nanopure rinses. Water samples for DOC, CDOM, and absorbance 

were filtered through pre-ashed glass microfiber filters (Whatman GF/F) in the field and stored 
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in the dark at 4°C or frozen (Fe) until analysis. Samples for chlorophyll a were filtered in the 

field (Whatman GF/F) and stored frozen in foil until analysis by fluorometry following acetone 

extraction.  

Laboratory procedures. UV/Vis absorbance scans from 250 to 700 nm were obtained in 1- 

and/or 5-cm quartz cells on filtered samples using a UV-1601PC UV-visible spectrophotometer 

(Shimadzu Sci. Instr., Inc.). Results were used to compute: a440, SUVA254, and values of the 

spectral slope, S, over various wavelength ranges. Filtered water samples were analyzed for DOC 

using a Shimadzu TOC Vcpn analyzer (Shimadzu Sci. Instr., Inc.), calibrated with dilutions of a 

potassium hydrogen phthalate solution (Sigma Aldrich, Inc.). Blanks were prepared by 

mimicking the procedure with ultrahigh purity water and analyzing DOC to confirm that con-

tamination did not occur in sample handling.  

Secchi depth data. To increase the number and range of SD data for our analysis we obtained 

results from Minnesota’s well-established Citizen Lake Monitoring Program (CLMP), 

administered by the Minnesota Pollution Control Agency (MPCA), which collects SD data on 

lakes throughout the state. We selected imagery (described below) that included a large number 

of well monitored lakes with SD data collected within 3 days of image acquisition.  

3.2 Satellite imagery acquisition and processing 

Nearly cloud-free imagery was downloaded from the EROS Center, Sioux Falls, South 

Dakota. For SD comparisons, we used a Landsat 7 image of path 27 rows 27 through 30 from 

September 1, 2008, for which 309 SD measurements were available for model calibration, and a 

Landsat 8 image of path 27 rows 27 through 30 for August 22, 2013, for which 311 SD 

measurements were available. For CDOM model development and comparison, we used Landsat 

8 image of path 27 row 27 for September 16, 2013 and a Landsat 7 image of path 27 row 27 for 
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September 24, 2013. Image processing was based on methods we developed previously 

(Olmanson et al., 2001; Kloiber et al., 2002ab; Olmanson et al., 2008  & 2011; Chipman et al., 

2009; Brezonik et al., 2015).  We used Leica Geosystems ERDAS Imagine 2015 and ESRI 

ArcGIS 10.2 for image processing. Image preprocessing included layer stacking and removing 

areas with missing pixel values for some bands and areas obscured by clouds and haze. Because 

each image was calibrated individually with field data, we did not perform atmospheric 

correction or normalization of the image brightness data. 

Once image preprocessing was complete, a “water-only” image was produced by performing 

an unsupervised classification based on ISODATA clustering. Because water features have 

spectral characteristics distinct from terrestrial features, water pixels were grouped into one or a 

few distinct classes that could be easily identified. We then masked out terrestrial features to 

create a water-only image, performed an unsupervised classification on this image, and generated 

spectral signatures of each class. We used these signatures, along with the location where the 

pixels occurred, to differentiate open water from shallow water where sediment and/or 

macrophytes affected spectral response. Shallow water pixels tend to have high spatial variability 

compared to open water pixels and are easily identified. Based on this analysis, we removed the 

affected shallow water pixels to create an “open water” image.  

Spectral-radiometric data from the “open water” images were used to develop relationships 

with measured water quality data. For Landsat images used to retrieve SD information, we used 

a lake polygon layer with polygons delineating lakes or lake basins (Olmanson et al., 2001) to 

expedite the process. The signature editor in ERDAS Imagine was used to extract spectral data 

for all the lakes on the image. Using a histogram analysis procedure (Chipman et al., 2004; 

Olmanson et al., 2001), we calculated the mean band values from the middle 50% of the pixels 
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from each lake and imported them into Microsoft Excel. To avoid reliance on samples with only 

a few pixels, lakes with fewer than six pixels were removed. For Landsat images used to model 

CDOM levels, we delineated relatively large (8 to 319 pixels) sample locations in spectrally 

uniform areas from the imagery manually and used the signature editor in ERDAS Imagine to 

extract the spectral data. The larger sample size (versus relying on one or a few pixels) has been 

shown to significantly increase correlation strength, as measured by r
2
 and the standard error of

the estimate (Kloiber et al. 2002a, Lillisand et al. 1983) in legacy Landsat imagery. Ratios for all 

band combinations were calculated, and field data were linked to the appropriate lake. 

3.3 Model development 

To develop models to estimate SD from the imagery products, we performed forward step-

wise regressions of the band data sets using the JMP Pro 11 statistical software package (SAS 

Institute, Inc.). The log-transformed value of SD was the dependent variable, and single bands 

and band ratios were the independent variables. From these results, we used the two independent 

variables that contributed most to the regression fit and applied them in a second multiple 

regression using the general form: 

ln(SD) = b1(band or combination) + b2(band or combination) + b3 [3] 

where b1-b3 are coefficients fit to the calibration data by the regression analysis, ln(SD) is the 

natural logarithm (ln) of SD for a given lake, and “band or combination” is the image radiance 

value for the selected lake pixels in the best fit band or band ratios.  

CDOM retrieval equations were also developed by regression analysis using the calibration 

data we gathered in 2013 and 2014; no other sources of CDOM data were available for 

Minnesota. Regressions were performed in Systat and JMP Pro 11. We explored a wide variety 
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of model forms involving ETM+ and OLI bands and band ratios using both a440 and ln(a440) as 

the dependent variables.    

4. Results

4.1 Water quality calibration data sets 

SD data from the MPCA data base for the September 1, 2008 Landsat 7 image had a 

range of 0.15 to 8.84 m (n = 309) with mean and median values of 2.75 and 2.54 m, 

respectively. SD data for the August 22, 2013 Landsat 8 image had a range of 0.02 to 8.53 m 

(n = 311) and mean and median values of 3.04 and 3.00 m, respectively. The ranges are close 

to the observed ranges for SD in lakes across the state of Minnesota (Olmanson et al., 2013). 

A statistical summary of water quality characteristics for the 28 CDOM calibration sites 

shows a wide range of CDOM values (a440 of 0.5-25.1 m
-1

). Mean (± standard deviation) and

median values for a440 in the data set are 8.9 ±7.3 and 7.0 m
-1

, respectively. Selected sites are

thought to be broadly representative of the approximate range of a440 in northern and central 

Minnesota. They were not selected on a random basis, however, and extrapolation of the 

mean, standard deviation and range to the entire population of lakes and rivers in the region 

would not be appropriate. The wide range of CDOM in the database is useful in determining 

the best models for each sensor. 

As noted above, we sampled sites that included a broad range of chlorophyll 

concentrations and suspended sediments so that the calibration database would include 

systems where light absorption and scattering by algae and mineral suspended sediment 

(MSS) was important, as well as lakes where CDOM was the only important optical 

property. The ranges of chlorophyll a (1.5-25.5 μg/L), TSS (0.7-1012.2 mg/L), MSS (0.0-
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873.9 mg/L) and SD (0.5-5.0 m) in the site data set indicate that this was achieved. The data 

set thus includes moderately eutrophic lakes that are optically complex systems. The ranges 

for SD and chlorophyll are typical for lakes in the Minnesota ecoregions where the data were 

collected (Olmanson et al., 2008) and optically complex riverine systems with high MSS. 

Corresponding mean (± standard deviation) and median values for chlorophyll a, TSS, MSS 

and SD in the data set are 7.2 ± 6.2 and 5.2 μg/L, 75.7 ± 234.2, 3.6 mg/L, and 72.7 ± 213.7, 

2.3 mg/L, 1.71 ± 1.27 and 1.25 m, respectively. 

4.2 Model Development for SD 

The September 1, 2008 Landsat 7 ETM+ image was used previously as part of a Minnesota 

statewide water clarity assessment for 2008, which can be accessed at water.umn.edu. For this 

image we used the legacy model involving the ETM+ blue and red bands (bands 1 and 3, 

hereafter denoted E1 and E3): ln(SD) = b1(E1/E3) + b2E1), which has been used for routine 

monitoring of water clarity (SD) in Minnesota (Olmanson et al. 2008), Wisconsin (Greb et al., 

2009; Chipman et al., 2004), and Michigan (Fuller et al., 2004 & 2011). A strong relationship 

was found between ln(SD) and the spectral radiometric responses in the image (R
2
 = 0.82;

RMSE = 0.35).  

Stepwise regression was used to identify the best SD model for the August 22, 2013 Landsat 

8 image, with all the bands and band ratios, including the new ultra-blue and narrower NIR 

bands, as potential independent variables. The best SD model for Landsat 8 used the OLI blue, 

red and ultra-blue bands (bands 2, 4, and 1, respectively, hereafter denoted O2, O4, and O1): 

ln(SD) = b0 + b1(O2/O4) + b2O1 (R
2
 = 0.82; RMSE = 0.334). This model was nearly identical
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with ln(SD) = b0 + b1(O2/O4) + b2O2 (R
2
 = 0.817; RMSE = 0.337), which is similar to the

legacy model used for the Landsat 7 image.  

4.3 Model Development for CDOM 

Landsat 7. Overall, Landsat 7 did not perform as well as Landsat 8 (see discussion below), 

but when the entire dataset was used, a few models did work as well as previous studies (e.g., 

Kutser et al., 2005a; Brezonik et al., 2005). The best fit for Landsat 7 was obtained with a two-

variable model involving two band ratios: ln(a440) = b0 + b1(E2/E3) + b2(E3/E4) (R
2
 = 0.74),

where E2, E3 and E4 are the radiance in ETM+ bands 2, 3 and 4). Four additional models had 

reasonable fits (R
2
 > 0.6), including a model involving the band ratio E2/E4 and band E3 with R

2

= 0.67 (Table 1). The model coefficients in Table 1 are specific to this data set and incorporate 

atmospheric effects for the images used. A comparable set of calibration data would be needed to 

determine the coefficients in future studies.  

A regression of ln(a440) versus ln(E2/E3) yielded a poor fit for Landsat 7 (R
2
 = 0.25) when all

25 data points were included. This model is essentially a natural logarithm transform of the 

widely used model of Kutser et al. (2005ab). Inspection of the plot of ln(a440) versus ln(E2/E3) 

(green/red bands) (Figure 1) showed that all five sites on the St. Louis River estuary (SLRE), 

which flows into western Lake Superior near Duluth, Minnesota, were large outliers. These sites 

had high levels of mineral suspended solids that likely contribute to their status as outliers.  

Excluding these sites from the analysis yielded a data set containing 20 sites (average a440 = 8.7 

m
-1

; range = 0.5-22.6 m
-1

) of less optically complex waters which may be typical for inland lakes

in many areas. We examined a wide variety of potential band and band ratio models for retrieval 

of ln(a440) and a440 using this subset (Table 2) and found 8 model forms that yielded R
2
 > 0.7  An
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additional 11 model forms had R
2
 in the range 0.6-0.7. The best fit was obtained with a two-

variable model: ln(a440) = b0 + b1(E2/E3) + b2(E2) (R
2
 = 0.83), which is similar to the best model

reported by Brezonik et al. (2005). A model involving the two band ratios E1/E3 and E2/E3 was 

almost as good (R
2
 = 0.83), and a model involving only the E2/E3 band ratio yielded R

2
 = 0.80.

The Kutser-like model, ln(a440) vs. ln(E2/E3), had only a slightly poorer fit (R
2
 = 0.79). In

contrast, analogous models using band ratios with E4 in the denominator gave R
2
 of ~0.6.

Overall, it appears that Landsat 7 can provide reasonable predictive relationships for a440 using a 

variety of model forms, some of which include the NIR band for data sets involving a rather 

wide range of CDOM levels and turbidity. Relationships break down, however, for some models, 

including the “Kutser” model, in waters with high mineral suspended solids and in some high 

CDOM waters.  

Landsat 8. Better relationships were obtained for CDOM retrieval with the OLI sensor than 

with ETM+. For example, a two-variable model form, ln(a440) = b0 + b1(O3/O5) + b2(O4), 

yielded  R
2
 = 0.82 when all 28 data points were included. Models with ln(a440) as dependent

variables and ln(O2/O5) plus O1 as independent variables yielded R
2
 = 0.79. When O2 was

substituted for the second term, the R
2
 was reduced to 0.73, but this form allowed closer

comparison with a corresponding “legacy” Landsat 7 model: ln(a440) = b0 + b1(E1/E4) + b2(E1), 

which for the Landsat 7 image had an R
2
 of only 0.62. In contrast, the ln-transformed model of

Kutser et al. (2005ab), ln(a440) vs. ln(O3/O4), had an R
2
 of only 0.24, and the best one-variable

ln-ln model using all the data was ln(a440) vs. ln(O2/O5), R
2
= 0.48. A plot of ln(a440) versus

ln(O3/O4), which is comparable to the Landsat 7 model ln (a440) versus ln(E2/E3) for the same 

sites available in the Landsat 7 image (Figure 2), showed that the five SLRE sites also were large 

outliers for the Landsat 8 data. 
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The SLRE sites plus SW Bay of Sturgeon Lake and two high CDOM lakes (Johnson & 

Section 11) that were not in the Landsat 7 data set were removed to yield a data set with 20 sites 

(average a440 = 9.7 m
-1

; range 0.5-25.1 m
-1

) coincident to the subset used for Landsat 7. For this

less optically complex subset a wide variety of potential band and band ratio models were 

examined for retrieval of ln(a440) and a440 using this data set (Table 3). The additional ultra-blue 

band (O1) in the OLI sensor resulted in a larger number of potential band combinations than was 

the case with the 4 bands (3 visible and 1 NIR) of the ETM+ sensor. A total of eight model forms 

had R
2
 > 0.8, an additional 5 had R

2
 between 0.7 and 0.8, and 10 had R

2
 between 0.6 and 0.7.

The best fit models (R
2
 of 0.82-0.83) involved two band ratios, all with band O4 (red) as

denominator terms, but models involving just the O3/O4 ratio (green/red) were nearly as good 

(R
2
 of 0.818-0.820). Inclusion of O1, O2, or O3 as independent terms did not improve the O3/O4

relationship; in each case the second term was not statistically significant. In addition, the ln-

linear model (ln(a440) vs. O3/O4) had the same R
2
 as the ln-ln model (ln(a440) vs. ln(O3/O4)).

We also examined additional models with the full data sets that include the high suspended 

sediment and high CDOM waters and found a two-variable model: ln(a440) = b0 + b1(O3/O4) + 

b2(O4/O5) (R
2
 = 0.76) for Landsat 8 and comparable model, ln(a440) = b0 + b1(E2/E3) +

b2(E3/E4) (R
2
 = 0.74), for Landsat 7 worked reasonably well for both sensors. Having models

that work with optically complex waters will be important for regional measurements when 

optical properties are unknown. 

The generally strong performance of the ETM+ sensor in this study in spite of its lower 

radiometric sensitivity and signal to noise ratio probably can be explained by the approach we 

used to retrieve water quality information from the imagery. In particular, use of a large number 

of pixels essentially provides more precise estimates of spectral radiometric data than individual 
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pixels provide. To illustrate this statistically we compared the USGS Surface Reflectance 

Landsat products for the OLI and ETM+ sensors using a sample of 196 pixels from a spectrally 

similar area in Lake Vermillion.  The improved signal to noise ratio of the OLI sensor is evident 

with significantly lower ± standard deviations and coefficients of variation (CV) than the ETM+ 

sensor (Table 4). This is further illustrated in the CDOM maps where the Landsat 7 map shows 

more noise, (Figures 5 and 6) than the Landsat 8 map (Figure 7 and 8). 

5. Discussion and Conclusions

For SD we found strong relationships with both sensors, and the OLI sensor did not appear to

be better than ETM+ even for the higher clarity lakes in our datasets (Figures 3 and 4). Although 

the higher radiometric sensitivity of OLI should allow for more accurate measurements on lakes 

with high clarity (> ~6-8 m) this may have been mitigated by our approach of using many pixels 

as discussed above. The range of SD values in our calibration dataset (0.15-8.8 m) is suitable for 

most Minnesota lakes, but with only 9 and 18 measurements > 6 m for Landsat 7 and 8, 

respectively, more measurements of water clarity in the most oligotrophic waters are needed to 

determine whether OLI is more accurate than ETM+ in measuring water clarity in lakes with SD 

> ~ 6-8 m.

Overall, it appears that both Landsat 7 and Landsat 8 can provide reasonable predictive 

relationships for a440 using a variety of model forms for data sets involving low to moderate 

CDOM levels, but relationships broke down in waters with high inorganic suspended sediment 

and some high CDOM waters when some models, including the Kutser nonlinear ratio model, 

were used. Therefore, it may be necessary to either limit their use to more optically simple 

waters with low to moderate CDOM levels or select models that work equally well in simple and 

optically complex waters. How best to determine when simpler models are no longer adequate is 
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an issue that needs further analysis. In this study models using the new Landsat 8 ultra-blue and 

narrower NIR band worked best for the full dataset, which included optically complex waters; 

however, the comparable model did not work as well for Landsat 7 indicating that the new bands 

improve CDOM measurements. Two-variable models using the green/red and red/NIR bands 

worked reasonably well for both Landsat 7 and Landsat 8 and represented the high CDOM and 

the SLRE waters with high mineral suspended solids well. Use of the model that worked best for 

each sensor produced maps with comparable levels of CDOM. The Landsat 7 map (Figure 5 and 

6) shows more noise, however, than the Landsat 8 map (Figure 7 and 8) and has missing data

because of the malfunction of the scan line corrector.  

Although further research with a larger dataset is needed to determine the overall best model 

for each sensor and dominant water quality characteristics, this study indicates that Landsat 7 can 

be used for historic measurements of CDOM, which is important to determine whether long term 

changes in CDOM levels have been occurring. The OLI sensor’s ultra-blue and narrower NIR 

bands, along with improved radiometric and signal to noise ratios, seem to provide substantial 

improvements that will open up opportunities for accurately measuring and mapping CDOM and 

understanding the controls over water clarity and carbon cycles at regional to global scales.  
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Table 1. Summary of regression results for various band and band ratios models to predict ln(a440) using 

the September 16, 2013 Landsat 8 and September 24, 2013 Landsat 7 image using all available ground 

data (28 and 25 respectively) from surface water locations. 

 Equation coefficients 

Independent y = b0 + b1(x1) + b2(x2)    Large  

Variablesa R2  b0   b1  b2      Leverageb, d   SEEc 

Landsat 7 ln(a440) models 

lnE2/E3,   lnE3/E4 0.74 11.1 -13.2 -7.2 1 0.49 

E2/E3,   E3/E4 0.74 20.3 -10 -2.4 1,2 0.49 

E2/E4,   E3 0.67 8.8 -3.3 0.11 1,2 0.49 

ln(E1/E4),   E1 0.62 23.5 -12 -0.07 1,2 0.60 

E1/E4,   E1 0.61 16.1 -2.4 -0.06 1,2 0.60 

ln(E1/E4) 0.60 21.9 -13 1,2 0.60 

Landsat 8 ln(a440) models 

O3/O5,  O4 0.82 23.5 -36 0.004 2 0.43 

ln(O2/O5),   O1 0.79 -21.9 -75.8 0.005 1,2 0.46 

O3/O5,   O3 0.78 23.7 -70.3 0.010 2 0.47 

lnO3/O4, lnO4/O5 0.76 8.3 -50 -19.0 2 0.50 

O3/O4,   O4/O5 0.74 67.4 -44.8 -15.0 2 0.51 

ln(O2/O5),   O2 0.73 -9.4 -73.3 0.005 1,2 0.53 

O2/O5,   O2 0.73 38 -51.4 0.005 1,2 0.52 

O3/O4,   O3  0.66 52.6 -33 -0.002 2 0.58 

O1/O4,   O2/O4 0.64 20.3 121.1 -149.5 1,2 0.60 

O1/O4,   O3/O4 0.61 35.6 16.4 -52.0 2 0.63 

O3/O4,   O2 0.61 58.4 -27.9 -0.003 1,2 0.63 

a
 Numbers refer to Landsat 7 ETM+ bands and Landsat 8 OLI bands. Commas separate terms in a given model. 

b
 Case 1 (Lake Superior, near Duluth) had large leverage in models where noted; case 2 (SLRE 10 Allouez Bay) 

   had large leverage in models where noted (see Brezonik et al. 2015 for site map). 
c
 Standard error of estimate. 

d
 Similar regression equations and fits were obtained when the high-leverage data points were removed.  
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Table 2. Summary of regression results for various band and band ratios models to predict a440 or ln(a440) 

using the September 24, 2013 Landsat 7 image and ground data from 20 surface water locations. 

Equation coefficientsa  

Independent y = b0 + b1(x1) + b2(x2) + b3(x3)  Large 

Variablesb R2 b0 b1 b2 b3 
Leverage

c, d Outlierc RMSE 

ln(a440) 

E1/E3,   E2/E3 0.827 14.62 2.77 -14.21 0.43 

E1/E4,  E2/E4, 
E3/E4 

0.817 
2.21 

1.01ns -5.84 5.36 18 0.46 

E2/E4,   E3/E4 0.807 4.03 -4.52 4.932 18 0.46 

E2/E3,   E2 0.832 17.54 -8.53 -0.142 18 0.43 

E2/E3,   E1 0.808 19.1 -9.09 -0.104ns 18 15 0.46 

E1/E3,   E2 0.801 21.02 -4.05 -0.333 18 0.46 

E1/E3,   E1 0.637 23.56 -2.69 -0.313 18 0.63 

E2/E4,   E1  0.653 17.57 -1.57 -0.219 18 0.62 

E2/E4,   E2 0.608 12.08 -1.47ns -0.189ns 18 0.65 

E1/E4,   E2  0.641 14.37 -1.19ns -0.220 18 0.63 

E1/E4,   E1  0.637 19.07 -1.24 -0.224ns 18 0.63 

E2/E3 0.791 16.04 -10.8 18 15 0.46 

ln(E2/E3) 0.784 5.75 -14.5 15 0.47 

a440 

E1/E3,   E2/E3 0.676 64.88 19.2ns -74.1 3.1 

E1/E4,  E2/E4, 
E3/E4  

0.668 
-9.62 13.9ns -39.2

30.08 18 
3.3 

E2/E4,   E3/E4 0.601 15.49 -21.0 24.2 18 3.5 

E2/E3,   E1 0.616 71.08 -52.77 0.124ns 18 15 3.4 

E2/E3,   E2  0.641 81.01 -41.0 -0.595ns 18 3.3 

E2/E3 0.615 74.72 -50.69 18 15 3.3 

 a
 Superscript 

ns
 after a coefficient means it was not statistically significant. 

b
 Numbers for independent variables refer to Landsat 7 ETM+ bands. Commas separate terms in a given model. 

c
 Case 18 (Lake Superior, near Duluth) had large leverage in models where noted; case 15 (South Sturgeon L.) was 

  an outlier, where noted. 
d
 Similar regression equations and fits were obtained when the high-leverage data points were removed.  

e
The following ln(a440) model forms had R

2
 values < 0.6: E1/E4, E2/E4; E2; E1/E4; ln(E2/E4); and ln(E1/E4).

f
The following a440 model forms had R

2
 values < 0.6: E1/E4, E2/E4; E2/E4, E2; E2/E4, E1; E1/E3, E1; E1/E4, E1; E2/E4.
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Table 3. Summary of regression results for various band and band ratios models to predict ln(a440) or a440 

using the September 16, 2013 Landsat 8 image and ground data from 20 surface water locations. 

Equation coefficientsa  

Independent y = b0 + b1(x1) + b2(x2) Large  

Variablesb R2 b0 b1 b2   Leveragec, d Outlierc RMSE 

ln(a440) modelsd 

O1/O4,   O2/O4 0.830 29.2 109.3 -143.2 16,18 0.44 

O1/O4,   O3/O4 0.821 48.4 2.6ns -45.7 18 0.46 

O2/O4,   O3/O4 0.820 48.8 2.6ns -45.8 18 0.46 

O3/O4,   O1 0.820 46.6 -43.7 0.000ns 16 0.46 

O3/O4,   O3 0.819 49.6 -42.5 0.000ns 0.46 

O3/O4,   O2 0.818 48.3 -43.3 0.000ns 16 0.46 

O3/O4  0.818 49.0 -42.9 0.45 

ln(O3/O4) 0.818 6.3 -47.5 0.45 

O3/O5,   O3 0.796 28.4 -72.7 0.009 0.49 

O2/O5,   O2 0.729 32.4 -56 0.006 11,16 0.56 

O1/O5,   O2/O5 0.667 34.4 59.5 -89.5 16,18 0.62 

O1/O5,   O1 0.665 30.1 -52.4 0.006 11,16 0.62 

O2/O5,   O3/O5 0.621 47.0 -22.1 -11.7ns
16,18 0.66 

O1/O5,   O3/O5 0.600 49.7 -16.8 -17.9 16,18 0.68 

a440 modelse 

O3/O4,   O1  0.753 162 -294 0.02 16 3.5 

O3/O4,   O2 0.738 193 -308 0.02 16 14 3.6 

O3/O5,   O3 0.730 127 -496 0.074 3.7 

O3/O4,   O3 0.666 259 -271 -0.007ns 4.1 

O2/O4,   O3/O4  0.660 284.3 42.5ns -300 18 4.1 

O1/O4,   O3/O4 0.659 279.2 30.8ns -286 18 4.2 

O3/O4  0.648 286 -252 4.1 

O2/O5,   O2 0.630   80.3ns -397 0.064  11,16 4.3 

O1/O5,   O1 0.611   50.8ns -359 0.061  11,16 4.4 

a
 Superscript 

ns
 means coefficient was not statistically significant. 

b
 Numbers for independent variables refer to Landsat 8 OLI bands. Commas separate terms in a given model. 

c
 Cases 11 (Sandy River L.), 16 (L. Superior), 18 (L. Vermilion, Big Bay),  had large leverage and case 14 (South 

  Sturgeon L.) was an outlier in models where noted. 
d
 Similar regression equations and fits were obtained when the high-leverage data points were removed.  

e
The following ln(a440) model forms had R

2
 < 0.6 (in order of decreasing R

2
): O3/O5, O1; O3/O5, O2; ln(O2/O5);

   O2/O5; ln(O3/O5); O3/O5; ln(O2/O4); ln(O1/O5); O1/O5; O1/O4; ln(O1/O4); and O3. 

  f
The following a440 model forms had R

2
 < 0.6 (in order of decreasing R

2
): O1/O4, O2/O4; O3/O5, O2; O3/O5, O1;

   O1/O5, O2/O5; O2/O4, O2; O2/O5, O3/O5; O1/O5, O3/O5; O3/O5; O2/O5; O1/O4, O1; O1/O5; and O3. 
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Table 4. Lake Vermillion summary statistics for a 196 pixel sample from the Landsat OLI and ETM+ 

sensors to illustrate the improved signal to noise ratio of the OLI sensor. Units are in surface reflectance 

with a 0.0001 scale factor. 

September 16, 2013 OLI September 24, 2013 ETM+ 

OLI Min Max Mean SDV CV % ETM+ Min Max Mean SDV CV % 

1 72 96 83.61 4.69 5.60 

2 99 113 106.28 2.63 2.48 1 118 268 202.63 26.02 12.84 

3 158 175 167.02 2.97 1.78 2 182 290 233.65 23.40 10.01 

4 108 120 113.88 2.73 2.39 3 66 183 131.56 24.50 18.63 

5 32 43 37.03 1.98 5.34 4 37 142 95.58 25.83 27.03 

6 1 8 4.40 1.35 30.67 5 -68 80 19.22 22.51 117.08 

7 -2 5 1.85 1.38 74.24 7 -65 89 17.74 28.03 158.05 

Standard deviation (SDV) 

Coefficient of variation (CV) 
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List of Figure Captions 

Figure 1. Plot of in situ ln(a440) vs. ln(B2/B3) Landsat 7 ETM+. The SLRE outliers are shown in 

blue. 

Figure 2. Plot of in situ ln(a440) vs. ln(B3/B4) Landsat 8 OLI. The SLRE outliers are shown in 

blue. 

Figure 3. Plot of in situ ln(SD) vs. Landsat 7 ETM+ derived ln(SD). 

Figure 4. Plot of in situ ln(SD) vs. Landsat 8 OLI derived ln(SD). 

Figure 5. Distribution of lake CDOM levels in northern MN near Ely based on part of the 

September 9, 2013 Landsat 7 image. 

Figure 6. Distribution of lake CDOM levels in Pike and Big Bay of Lake Vermillion using the 

September 24, 2013 Landsat 7 image. 

Figure 7. Distribution of lake CDOM levels in northern MN near Ely based on part of the 

September 16, 2013 Landsat 8 image. 

Figure 8. Distribution of lake CDOM levels in Pike and Big Bay of Lake Vermillion using the 

September 16, 2013 Landsat 8 image. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 



34 

Fig. 7 
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Fig. 8 
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Research Highlights 

Landsat 7 and 8 data were compared for mapping CDOM and clarity of inland lakes 

Landsat 8 was better for estimating CDOM than Landsat 7 in optically complex waters 

Landsat 8 was only a slight improvement over Landsat 7 for measuring water clarity  

Landsat 7 and 8 will continue and enhance remote sensing of regional water quality 




